
Building Kafka-based Microservices
with Akka Streams and Kafka Streams

Boris Lublinsky and Dean Wampler, Lightbend

boris.lublinsky@lightbend.com
dean.wampler@lightbend.com

©Copyright 2018, Lightbend, Inc.
Apache 2.0 License. Please use as you see fit, but attribution is requested.

O
ut

lin
e

• Overview of streaming architectures

• Kafka, Spark, Flink, Akka Streams, Kafka Streams

• Running example: Serving machine learning models

• Streaming in a microservice context

• Akka Streams

• Kafka Streams

• Wrap up

About Streaming Architectures

Why Kafka, Spark, Flink, Akka Streams, and Kafka Streams?

Check out these resources:

Dean’s book

Webinars

etc.

Fast Data Architectures  
for Streaming Applications
Getting Answers Now from Data Sets that Never End

By Dean Wampler, Ph. D., VP of Fast Data Engineering

Get Your Free Copy

4

! Dean wrote this report describing the whole fast data landscape.
! bit.ly/lightbend-fast-data
! Previous talks (“Stream All the Things!”) and webinars (such as this one, https://info.lightbend.com/webinar-moving-from-big-data-to-fast-data-heres-how-to-pick-the-

right-streaming-engine-recording.html) have covered the whole architecture. This session dives into the next level of detail, using Akka Streams and Kafka Streams to
build Kafka-based microservices

Mesos, YARN, Cloud, …

Logs

Sockets

REST
ZooKeeper Cluster

ZK

Mini-batch

Spark	
Streaming

Batch

Spark

…

Low Latency

Flink

Ka9a	Streams
Akka	Streams Be

am

…

Persistence

S3

HDFS

DiskDiskDisk

SQL/
NoSQLSearch

1

5

6

3
11

KaEa Cluster

Ka9a

Microservices

RP Go

Node.js …

2
4

7

8

9

10

Be
am

Today’s focus:
•Kafka - the data
backplane

•Akka Streams
and Kafka
Streams -
streaming
microservices

Kafka is the data backplane for high-volume data streams, which are organized by topics. Kafka has high scalability and resiliency, so it's an excellent integration tool
between data producers and consumers.

Mesos, YARN, Cloud, …

Logs

Sockets

REST
ZooKeeper Cluster

ZK

Mini-batch

Spark	
Streaming

Batch

Spark

…

Low Latency

Flink

Ka9a	Streams
Akka	Streams Be

am

…

Persistence

S3

HDFS

DiskDiskDisk

SQL/
NoSQLSearch

1

5

6

3
11

KaEa Cluster

Ka9a

Microservices

RP Go

Node.js …

2
4

7

8

9

10

Be
am

What is Kafka?

Kafka is a distributed log, storing messages sequentially. Producers always write to the end of the log, consumers can read on the log offset that they want to read
from (earliest, latest, …)
Kafka can be used as either a queue or pub sub
The main differences are:
1.Log is persistent where queue is ephemeral (reads pop elements)
2. Traditional message brokers manage consumer offsets, while log systems allow users to manage offsets themselves

Alternatives to Kafka include Pravega (EMC) and Distributed Log/Pulsar (Apache)

Kafka cluster typically consists of multiple brokers to maintain load balance.
One Kafka broker instance can handle hundreds of thousands of reads and writes per second and each broker can handle TB (based on the disk size and network
performance) of messages without performance impact. Kafka broker leader election can be done by ZooKeeper.

A Topic and Its Partitions

Kafka data is organized by topic
A topic can be comprised of multiple partitions.
A partition is a physical data storage artifact. Data in a partition can be replicated across multiple brokers. Data in a partition is guaranteed to be sequential.
So, a topic is a logical aggregation of partitions. A topic doesn’t provide any sequential guarantee (except a one-partition topic, where it’s “accidental”).
Partitioning is an important scalability mechanism - individual consumers can read dedicated partitions.
Partitioning mechanisms - round-robin, key (hash) based, custom. Consider the sequential property when designing partitioning.

Consumer Groups

Consumers label themselves with a consumer group name, and each record published to a topic is delivered to one consumer instance within each subscribing consumer group (compare to queue semantics in
traditional messaging). Consumer instances can be in separate processes or on separate machines.

Kafka Producers and Consumers

11

1.Project overview
2.Explore and run the client project

• Creates in-memory (“embedded”) Kafka
instance and our topics

• Pumps data into them

Code time

We’ll walk through the whole project, to get the lay of the land, then look at the client piece. The embedded Kafka approach is suitable for non-production scenarios
only, like learning ;)

Service 1

Log &
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N * M links ConsumersProducers

Before:

Why Kafka for Connectivity?

We’re arguing that you should use Kafka as the data backplane in your architectures. Why?

First, point to point spaghetti integration quickly becomes unmanageable as the amount of services grows

Service 1

Log &
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N * M links ConsumersProducers

Before:

Service 1

Log &
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N + M links ConsumersProducers

After:

Why Kafka for Connectivity?

Kafka can simplify the situation by providing a single backbone which is used by all services (there are of coarse topics, but they are more logical then physical
connections). Additionally Kafka persistence provides robustness when a service crashes (data is captured safely, waiting for the service to be restarted) - see also
temporal decoupling, and provide the simplicity of one “API” for communicating between services.

Service 1

Log &
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N + M links ConsumersProducers

After:

Why Kafka for Connectivity?

Kafka:

• Simplify dependencies between
services

• Improved data consistency

• Minimize data transmissions

• Reduce data loss when a service
crashes

Kafka can significantly improve decoupling (no service specific endpoints, temporal decoupling), It minimize the amount of data send over network, each producer writes
data to Kafka, instead of writing it to multiple consumers. This also improves data consistency - the same data is consumed by all consumers. Extensibility is greatly
simplified - adding new consumers does not require any changes to producers, and provide the simplicity of one “API” for communicating between services.

Service 1

Log &
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N + M links ConsumersProducers

After:

Why Kafka for Connectivity?

Kafka:

• M producers, N consumers

• Improved extensibility

• Simplicity of one “API” for
communication

Kafka can significantly improve decoupling (no service specific endpoints, temporal decoupling), It minimize the amount of data send over network, each producer writes
data to Kafka, instead of writing it to multiple consumers. This also improves data consistency - the same data is consumed by all consumers. Extensibility is greatly
simplified - adding new consumers does not require any changes to producers, and provide the simplicity of one “API” for communicating between services.

Mesos, YARN, Cloud, …

Logs

Sockets

REST
ZooKeeper Cluster

ZK

Mini-batch

Spark	
Streaming

Batch

Spark

…

Low Latency

Flink

Ka9a	Streams
Akka	Streams Be

am

…

Persistence

S3

HDFS

DiskDiskDisk

SQL/
NoSQLSearch

1

5

6

3
11

KaEa Cluster

Ka9a

Microservices

RP Go

Node.js …

2
4

7

8

9

10

Be
am

Streaming Engines:

Spark, Flink - services to which
you submit work. Large scale,
automatic data partitioning.

They support highly scalable jobs, where they manage all the issues of scheduling processes, etc. You submit jobs to run to these running daemons. They handle
scalability, failover, load balancing, etc. for you.

Streaming Engines:

Spark, Flink - services to which
you submit work. Large scale,
automatic data partitioning.

You have to write jobs, using their APIs, that conform to their programming model. But if you do, Spark and Flink do a great deal of work under the hood for you!

Mesos, YARN, Cloud, …

Logs

Sockets

REST
ZooKeeper Cluster

ZK

Mini-batch

Spark	
Streaming

Batch

Spark

…

Low Latency

Flink

Ka9a	Streams
Akka	Streams Be

am

…

Persistence

S3

HDFS

DiskDiskDisk

SQL/
NoSQLSearch

1

5

6

3
11

KaEa Cluster

Ka9a

Microservices

RP Go

Node.js …

2
4

7

8

9

10

Be
am

Streaming Frameworks:

Akka Streams, Kafka Streams -
libraries for “data-centric micro
services”. Smaller scale, but great
flexibility.

Much more flexible deployment and configuration options, compared to Spark and Flink, but more effort is required by you to run them. They are “just libraries”, so
there is a lot of flexibility and interoperation capabilities.

Machine Learning and Model Serving:
A Quick Introduction

We’ll return to more details about AS and KS as we get into implementation details.

Serving Machine Learning Models
A Guide to Architecture, Stream Processing Engines,  
and Frameworks

By Boris Lublinsky, Fast Data Platform Architect

Get Your Free Copy

20

Our concrete examples are based on the content of this report by Boris, on different techniques for serving ML models in a streaming context.

ML Is Simple

21

Data Magic Happiness

Get a lot of data
Sprinkle some magic
And be happy with results

Maybe Not

22

Not only the climb is steep, but you are not sure which peak to climb
Court of the Patriarchs at Zion National park

Even If There Are Instructions

23

Not only the climb is steep, but you are not sure which peak to climb
Court of the Patriarchs at Zion National park

The Reality

24

Set business goals

Understand your
data

Create hypothesis

Define
experiments

Prepare 
data

Measure/ 
evaluate results

Score 
models

Export 
models

Verify/test models

Train/tune
models

We will only
discuss this

What Is The Model?

A model is a function transforming inputs to
outputs - y = f(x)

for example:

Linear regression: y = ac + a1*x1 + … + an*xn

Neural network: f (x) = K (∑i wi g i (x))

Such a definition of the model allows for an easy implementation of
model’s composition. From the implementation point of view it is just
function composition

25

Model Learning Pipeline

UC Berkeley AMPLab introduced machine learning pipelines as a graph
defining the complete chain of data transformation.

26

Input Data Stream
Data

Preprocessing
Predictive 

Model
Data 

Postprocessing Results

model 
outputs

model 
inputs

model learning pipeline

UC Berkeley AMPLab introduced machine learning pipelines as a graph defining the complete chain of data transformation
The advantage of such approach
It captures the whole processing pipeline including data preparation transformations, machine learning itself and any required post processing of the ML results.
Although a single predictive model is shown on this picture, in reality several models can be chained to gather or composed in any other way. See PMML documentation
for description of different model composition approaches.
Definition of the complete model allows for optimization of the data processing.
Definition of the complete model allows for optimization of the data processing.
This notion of machine learning pipelines has been adopted by many applications including SparkML, Tensorflow, PMML, etc.

https://www.oreilly.com/ideas/building-and-deploying-large-scale-machine-learning-pipelines

Traditional Approach to Model Serving

• Model is code
• This code has to be saved and then somehow imported into

model serving 

Why is this problematic?

27

Impedance Mismatch

28

Continually expanding  
Data Scientist toolbox

Defined Software 
Engineer toolbox

In his talk at the last Flink Forward, Ted Dunning discussed the fact that with multiple tools available to Data scientists, they tend to use different tools for solving
different problems and as a result they are not very keen on tools standardization. This creates a problem for software engineers trying to use “proprietary” model
serving tools supporting specific machine learning technologies. As data scientists evaluate and introduce new technologies for machine learning, software engineers
are forced to introduce new software packages supporting model scoring for these additional technologies.

Alternative - Model As Data

29

Export Export

Data

Model 
Evaluator Results

Model 
Document

Portable
Format for
Analytics (PFA)Standards

In order to overcome these differences, Data Mining Group have introduced 2 standards - Predictive Model Markup Language (PMML) and Portable Format for Analytics
(PFA), both suited for description of the models that need to be served. Introduction of these models led to creation of several software products dedicated to
“generic” model serving, for example Openscoring, Open data group, etc.
Another de facto standard for machine learning is Tensorflow, which is widely used for both machine learning and model serving. Although it is a proprietary format, it
is used so widely that it becomes a standard
The result of this standardization is creation of the open source projects, supporting these formats - JPMML and Hadrian which are gaining more and more adoption for
building model serving implementations, for example ING, R implementation, SparkML support, Flink support, etc. Tensorflow also released Tensorflow java APIs,
which are used in a Flink TensorFlow

Exporting Model As Data With PMML

There are already a lot of export options

30

https://github.com/jpmml/jpmml-sparkml

https://github.com/jpmml/jpmml-sklearn

https://github.com/jpmml/jpmml-r

https://github.com/jpmml/jpmml-tensorflow

https://github.com/jpmml/jpmml-sparkml
https://github.com/jpmml/jpmml-sklearn
https://github.com/jpmml/jpmml-r
https://github.com/jpmml/jpmml-tensorflow

Evaluating PMML Model

There are also a few PMML evaluators

31

https://github.com/jpmml/jpmml-evaluator

https://github.com/opendatagroup/augustus

https://github.com/jpmml/jpmml-evaluator
https://github.com/opendatagroup/augustus

Exporting Model As Data With Tensorflow

• Tensorflow execution is based on Tensors and Graphs

• Tensors are defined as multilinear functions which consist
of various vector variables

• A computational graph is a series of Tensorflow operations
arranged into graph of nodes

• Tensorflow supports exporting graphs in the form of binary
protocol buffers

• There are two different export format - optimized graph
and a new format - saved model

32

• Tensorflow is implemented in C++ with a Python interface.

• In order to simplify Tensorflow usage from Java, in 2017
Google introduced Tensorflow Java API.

• Tensorflow Java API supports importing an exported model
and allows to use it for scoring.

33

Evaluating Tensorflow Model

We have a previously-trained TF model on the included “Wine Records” data. We’ll import that model to do scoring.

Additional Considerations – Model Lifecycle

• Models tend to change
• Update frequencies vary greatly –  

from hourly to quarterly/yearly
• Model version tracking
• Model release practices
• Model update process

34

The Solution
A streaming system allowing to update models without interruption of execution  
(dynamically controlled stream).

35

Machine 
learning

Data 
source

Model 
source

Data stream

Model stream
Model u

pdate

Streaming engine

Current
model

Additional 
processing

Result

External model  
storage (Optional)

The majority of machine learning implementations are based on running model serving as a REST service, which might not be appropriate for high-volume data
processing or streaming systems, since they require recoding/restarting systems for model updates. For example, Flink TensorFlow or Flink JPPML.

https://data-artisans.com/blog/bettercloud-dynamic-alerting-apache-flink

Model Representation (Protobufs)

36

// On the wire
syntax = “proto3”;
// Description of the trained model.
message ModelDescriptor {
 string name = 1; // Model name
 string description = 2; // Human readable
 string dataType = 3; // Data type for which this model is applied.
 enum ModelType { // Model type
 TENSORFLOW = 0;
 TENSORFLOWSAVED = 2;
 PMML = 2;
 };

 ModelType modeltype = 4;
 oneof MessageContent {
 // Byte array containing the model
 bytes data = 5;
 string location = 6;
 }
}

You need a neutral representation format that can be shared between different tools and over the wire. Protobufs (from Google) is one of the popular options. Recall
that this is the format used for model export by TensorFlow. Here is an example.

Model Representation (Scala)

37

trait Model {
 def score(input : Any) : Any
 def cleanup() : Unit
 def toBytes() : Array[Byte]
 def getType : Long
} 

def ModelFactoryl {
 def create(input : ModelDescriptor) : Model
 def restore(bytes : Array[Byte]) : Model
}

Corresponding Scala code that can be generated from the description.

Side Note: Monitoring
Model monitoring should provide information about usage,
behavior, performance and lifecycle of the deployed models

38

case class ModelToServeStats(
name: String, // Model name
 description: String, // Model descriptor
 modelType: ModelDescriptor.ModelType, // Model type
 since : Long, // Start time of model usage
 var usage : Long = 0, // Number of servings
 var duration : Double = 0.0, // Time spent on serving
 var min : Long = Long.MaxValue, // Min serving time
 var max : Long = Long.MinValue // Max serving time
)

Queryable State
Queryable state: ad hoc query of the state in the stream. Different than
the normal data flow.

Treats the stream processing layer as a lightweight embedded
database. Directly query the current state of a stream processing
application. No need to materialize that state to a database, etc. first.

39

Stream 
source

State

Stream
processor

Monitoring

Interactive queries

Streaming engine

Other app

Kafka Streams and Flink have built-in support for this and its being added to Spark Streaming. We’ll show how to use other Akka features to provide the same ability in
a straightforward way for Akka Streams.

Microservice All the Things!

Microservices?

https://twitter.com/shanselman/status/967703711492423682

“Record-centric” μ-services

Events Records

A Spectrum of Microservices

Event-driven μ-services

…

Browse

REST

AccountOrders

Shopping
Cart

API	Gateway

Inventory

storage

Data

Model
Training

Model
Serving

Other
Logic

By event-driven microservices, I mean that each individual datum is treated as a specific event that triggers some activity, like steps in a shopping session. Each event requires individual
handling, routing, responses, etc. REST, CQRS, and Event Sourcing are ideal for this.

Records are uniform (for a given stream), they typically represent instantiations of the same information type, for example time series; we can process them individually or as a group, for
efficiency.

It’s a spectrum because we might take those events and also route them through a data pipeline, like computing statistics or scoring against a machine learning model (as here), perhaps
for fraud detection, recommendations, etc.

Events Records

Event-driven μ-services

…

Browse

REST

AccountOrders

Shopping
Cart

API	Gateway

Inventory

Akka emerged from the left-hand
side of the spectrum, the world
of highly Reactive microservices.

Akka Streams pushes to the
right, more data-centric.

A Spectrum of Microservices

I think it’s useful to reflect on the history of these toolkits, because their capabilities reflect their histories. Akka Actors emerged in the world of building Reactive microservices, those
requiring high resiliency, scalability, responsiveness, CEP, and must be event driven. Akka is extremely lightweight and supports extreme parallelism, including across a cluster. However,
the Akka Streams API is effectively a dataflow API, so it nicely supports many streaming data scenarios, allowing Akka to cover more of the spectrum than before.

“Record-centric” μ-services

Events Records

storage

Data

Model
Training

Model
Serving

Other
Logic

Emerged from the right-hand
side.

Kafka Streams pushes to the
left, supporting many event-
processing scenarios.

A Spectrum of Microservices

Kafka reflects the heritage of moving and managing streams of data, first at LinkedIn. But from the beginning it has been used for event-driven microservices, where the “stream”
contained events, rather than records. Kafka Streams fits squarely in the record-processing world, where you define dataflows for processing and even SQL. It can also be used for event
processing scenarios.

Akka Streams

• A library

• Implements Reactive Streams.

• http://www.reactive-streams.org/

• Back pressure for flow control

46

See this website for details on why back pressure is an important concept for reliable flow control, especially if you don’t use something like Kafka as your “near-
infinite” buffer between services.

http://www.reactive-streams.org/

47

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

bounded queue

back
pressure

back
pressure

back
pressure

Bounded queues are the only sensible option (even Kafka topic partitions are bounded by disk sizes), but to prevent having to drop input when it’s full, consumers
signal to producers to limit flow. Most implementations use a push model when flow is fine and switch to a pull model when flow control is needed.

48

Event/Data
Stream

Consumer

Consumer

And they compose so you get end-to-end back pressure.

• Part of the Akka ecosystem

• Akka Actors, Akka Cluster, Akka HTTP, Akka
Persistence, …

• Alpakka - rich connection library

• like Camel, but implements Reactive
Streams

• Commercial support from Lightbend

49

Rich, mature tools for the full spectrum of microservice development.

• A very simple example to get the “gist”…

50

51

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

52

Imports!

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

53

Initialize and specify
now the stream is
“materialized”

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

54

Create a Source of
Ints. Second type is
for “side band” data
(not used here)

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

55

Scan the Source and
compute factorials,
with a seed of 1, of
type BigInt

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

56

Output to a Sink,
and run it

This example is in akkaStreamsCustomStage/simple-akka-streams-example.sc

import akka.stream._
import akka.stream.scaladsl._
import akka.NotUsed
import akka.actor.ActorSystem
import scala.concurrent._
import scala.concurrent.duration._

implicit val system = ActorSystem("QuickStart")
implicit val materializer = ActorMaterializer()

val source: Source[Int, NotUsed] = Source(1 to 10)
val factorials = source.scan(BigInt(1)) ((acc, next) => acc * next)
factorials.runWith(Sink.foreach(println))

57

A source, flow, and
sink constitute a
graph

Source Flow Sink

The core concepts are sources and sinks, connected by flows. There is the notion of a Graph for more complex dataflows, but we won’t discuss them further

• This example is included in the project:

• akkaStreamsCustomStage/simple-akka-streams-example.sc

• To run it (showing the different prompt!):

58

$ sbt
sbt:akkaKafkaTutorial> project akkaStreamsCustomStage
sbt:akkaStreamsCustomStage> console
scala> :load akkaStreamsCustomStage/simple-akka-streams-example.sc

The “.sc” extension is used so that the compiler doesn’t attempt to compile this Scala “script”. Using “.sc” is an informal convention for such files.
We used yellow to indicate the prompts (3 different shells!)

Using Custom Stage
Create a custom stage, a fully type-safe way to encapsulate new
functionality. Like adding a new “operator”.

59

Source 1 
Alpakka Flow 1

Source 2 
Alpakka Flow 2

Custom stage –  
model serving

Stream 1

Stream 2

Stream 1

Stream 2

Results Stream

Custom stage is an elegant implementation but doesn’t scale well to a large number of models. Although a stage can contain a hash map of models, all of the
execution will be happening at the same place

Using a Custom Stage

60

Code time

1. Run the client project (if not already running)
2. Explore and run akkaStreamsCustomStage

project

Custom stage is an elegant implementation but not scale well to a large number of models. Although a stage can contain a hash map of models, all of the execution
will be happening at the same place

Exercises!

61

We’ve prepared some exercises. We may not
have time during the tutorial to work on
them, but take a look at the exercise branch in
the Git project (or the separate X.Y.Z_exercise
download).
To find them, search for “// Exercise”. The
master branch implements the solutions for
most of them.

Other Production Concerns

62

•Scale scoring with workers and
routers, across a cluster

•Persist actor state with Akka
Persistence

•Connect to almost anything with
Alpakka

• Lightbend Enterprise Suite

• for production monitoring, etc.

Akka Cluster

Model Serving

Other
Logic

Al
pa

kk
a

Al
pa

kk
a

Ro
ut

er

Worker
Worker

Worker
Worker

Stateful
Logic
Persistence

actor	state	
storage

Akka Cluster

Data

Model
Training

Model
Serving

Other
Logic

Raw
Data

Model
Params

Final
Records

Al
pa

kk
a

Al
pa

kk
a

storage

Here’s our streaming microservice example adapted for Akka Streams. We’ll still use Kafka topics in some places and assume we’re using the same implementation for
the “Model Training” microservice. Alpakka provides the interface to Kafka, DBs, file systems, etc. We’re showing two microservices as before, but this time running in
Akka Cluster, with direct messaging between them. We’ll explore this a bit more after looking at the example code.

Improve Scalability for Model Serving
Use a router actor to forward requests to the actor
responsible for processing requests for a specific
model type.

64

Source 1 
Alpakka Flow 1

Source 2 
Alpakka Flow 2

Stream 1

Stream 2

Model
serving
router

Stream 1

Stream 2

Model
serving  
actor

Model
serving  

actorModel
serving  
actorModel

serving  
actor

We here create a routing layer: an actor that will implement model serving for specific model (based on key) and route messages appropriately. This way our system
will serve models in parallel.

Akka Streams with Actors and Persistence

65

1. While still running the client project…
2. Explore and run akkaActorsPersistent project

Code time

Custom stage is an elegant implementation but not scale well to a large number of models. Although a stage can contain a hash map of models, all of the execution
will be happening at the same place

 More Production Concerns

66

Using Akka Cluster

67

Two levels of
scalability:
• Kafka partitioned

topic allow to
scale listeners
according to the
amount of
partitions.

• Akka cluster
sharing allows to
split model
serving actors
across clusters.

Source 1 
Alpakka Flow 1

Source 2 
Alpakka Flow 2

Stream 1

Stream 2

Model
serving
router

Stream 1

Stream 2

Model
serving  
actorModel

serving  
actorModel

serving  
actorModel

serving  
actor

Source 1 
Alpakka Flow 1

Source 2 
Alpakka Flow 2

Stream 1

Stream 2

Model
serving
router

Stream 1

Stream 2

Model
serving  
actorModel

serving  
actorModel

serving  
actorModel

serving  
actor

 
 
 

Kafka Cluster

JVM

JVM

Akka Cluster

A great article http://michalplachta.com/2016/01/23/scalability-using-sharding-from-akka-cluster/ goes into a lot of details on both implementation and testing

•Extremely low latency

•Minimal I/O and memory
overhead

•No marshaling overhead

Go Direct or Through Kafka?

Akka Cluster

Model
Serving

Other
LogicAl

pa
kk

a

Al
pa

kk
a

Model
Serving

Other
Logic

Scored
Records

vs. ?

•Higher latency (including queue
depth)

•Higher I/O and processing
(marshaling) overhead

•Better potential reusability

Design choice: When is it better to use direct actor-to-actor (or service-to-service) messaging vs. going through a Kafka topic?

•Reactive Streams back
pressure

•Direct coupling between
sender and receiver, but
indirectly through a URL

Go Direct or Through Kafka?

Akka Cluster

Model
Serving

Other
LogicAl

pa
kk

a

Al
pa

kk
a

Model
Serving

Other
Logic

Scored
Records

vs. ?

•Very deep buffer (partition
limited by disk size)

•Strong decoupling - M
producers, N consumers,
completely disconnected

Design choice: When is it better to use direct actor-to-actor (or service-to-service) messaging vs. going through a Kafka topic?

Kafka Streams

Same sample use case, now with Kafka Streams

Kafka Streams

• Important stream-processing concepts, e.g.,

• Distinguish between event time and processing time

• Windowing support.

• For more on these concepts, see

• Dean’s book ;)

• Talks, blog posts, writing by Tyler Akidau

71

There’s a maturing body of thought about what streaming semantics should be, too much to discuss here. Dean’s book provides the next level of details. See Tyler’s
work (from the Google Apache Beam team) for deep dives.

Kafka Streams

• KStream - per-record transformations

• KTable - key/value store of supplemental
data

• Efficient management of application state

72

There is a duality between streams and tables. Tables are the latest state snapshot, while streams record the history of state evolution. A common way to implement
databases is to use an event (or change) log, then update the state from the log.

Kafka Streams

• Low overhead

• Read from and write to Kafka topics, memory

• Could use Kafka Connect for other sources and sinks

• Load balance and scale based on partitioning of topics

• Built-in support for Queryable State

73

Kafka Streams

• Two types of APIs:

• Process Topology

• Compare to Apache Storm

• DSL based on collection transformations

• Compare to Spark, Flink, Scala collections.

74

http://storm.apache.org/

Kafka Streams

• Provides a Java API

• Lightbend donating a Scala API to Apache Kafka

• https://github.com/lightbend/kafka-streams-scala

• See also our convenience tools for distributed,
queryable state: https://github.com/lightbend/
kafka-streams-query

• SQL - kind off, through a specialized application

75

The kafka-streams-query uses a KS API to find all the partitions across a cluster for a given topic, query their state, and aggregate the results, behind a web service.
Otherwise, you have to query the partitions individually yourself.

https://github.com/lightbend/kafka-streams-scala
https://github.com/lightbend/kafka-streams-query
https://github.com/lightbend/kafka-streams-query
https://github.com/lightbend/kafka-streams-query

Kafka Streams

• Ideally suited for:

• ETL -> KStreams

• State -> KTable

• Joins, including Stream and Table joins

• “Effectively once” semantics

• Commercial support from Confluent, Lightbend,
and others

76

Model Serving With Kafka Streams

77

Source 1

Source 2

Process stream 1 record

Process stream 2 record

Current state

Result stream
processing

Stream 1

Stream 2 Results stream

State Store Options We’ll Explore

• “Naive”, in memory store

• Built-in key/value store provided by Kafka
Streams

• Custom store

78

We provide three example implementations, using three different ways of storing state. “Naive” - because in-memory state is lost if the process crashes; a restart
can’t pick up where the previous instance left off.

Model Serving With Kafka Streams

79

1. Still running the client project…
2. Explore and run:

kafkaStreamsModelServerInMemoryStore
• The “naive” model
• Uses the processor topology API

Code time

Model Serving With Kafka Streams, KV Store

80

1. Still running the client project…
2. Explore and run:

kafkaStreamsModelServerKVStore
• Uses the collections-like DSL
• Uses the built-in key-value store
• ModelServer.scala - Uses the KS Java API
• ModelServerFluent.scala - the LB Scala API

Code time

The difference between ModelServer.scala and ModelServerFluent.scala is the KS API used. The 1st uses the KS Java API directly from Scala. It’s hard to read, because
of all the type signatures that can’t be inferred by the Scala compiler. The 2nd uses the Lightbend Scala API, which supports Scala type inference better, resulting in
cleaner, easier to read code.

Model Serving With Kafka Streams, Custom Store

81

1. Still running the client project…
2. Explore and run:

kafkaStreamsModelServerCustomStore
• Also uses the collections-like DSL
• Uses a customer data store
• ModelServer.scala - Uses the KS Java API
• ModelServerFluent.scala - the LB Scala API

Code time

Wrapping Up

“Record-centric” μ-services

Events Records

To Wrap Up

Event-driven μ-services

…

Browse

REST

AccountOrders

Shopping
Cart

API	Gateway

Inventory

storage

Data

Model
Training

Model
Serving

Other
Logic

Akka Streams is a great choice if you are building full-spectrum microservices and you need lots of flexibility in your app architectures, connecting to different kinds of data sources and
sinks, etc.

Kafka Streams is a great choice if your use cases fit nicely in it’s “sweet spot”, you want SQL access, and you don’t need to full flexibility of something like Akka.

Of course, you can use both! They are “just libraries”.

In Our Remaining Time Today…

1. Try the exercises in the exercise branch (or the
X.Y.Z_exercise
• Search for “// Exercise” in the code

2. Explore the code we didn’t discuss (a lot ;)
3. Ask us for help on anything now…
4. Visit lightbend.com/fast-data-platform
5. Profit!!

http://lightbend.com/fast-data-platform

Thank
You

lightbend.com/products/fast-data-platform
boris.lublinsky@lightbend.com
dean.wampler@lightbend.com

• Kafka streaming applications with Akka Streams and Kafka Streams (Dean)
• Thursday 11:00 - 11:40, Expo Hall 1

• Meet the Expert (Dean)
• Thursday 11:50 - 12:30, O’Reilly Booth, Expo Hall

• AMA, (Boris and Dean)
• Thursday 2:40 - 3:20, 212 A-B

And don’t miss:
• Approximation data structures in streaming data processing (Debasish Ghosh)

• Wednesday 1:50 - 2:30, 230A
• Machine-learned model quality monitoring in fast data and streaming

applications (Emre Velipasaoglu)
• Thursday 1:50 - 2:30, LL21 C/D

Questions?

Thank you! Please check out the other Strata San Jose sessions by Boris, Dean, and our colleagues Debasish and Emre. Check out our Fast Data Platform for commercial options for
building and running microservices with Kafka, Akka Streams, and Kafka Streams.

